数字推理题主要有以下几种题型: 1.等差数列及其变式 例题:1,4,7,10,13,( ) a.14 b.15 c.16 d.17 答案为c。我们很容易从中发现相邻两个数字之间的差是一个常数3,所以括号中的数字应为16。等差数列是数字推理测验中排列数字的常见规律之一。 例题:3,4,6,9,( ),18 a.11 b.12 c.13 d.14 答案为c。仔细观察,本题中的相邻两项之差构成一个等差数列1,2,3,4,5.……,因此很快可以推算出括号内的数字应为13,象这种相邻项之差虽不是一个常数,但有着明显的规律性,可以把它看作等差数列的变式。 2.“两项之和等于第三项”型 例题:34,35,69,104,( ) a.138 b.139 c.173 d.179 答案为c。观察数字的前三项,发现第一项与第二项相加等于第三项,3435=69,在把这假设在下一数字中检验,3569=104,得到验证,因此类推,得出答案为173。前几项或后几项的和等于后一项是数字排列的又一重要规律。 3.等比数列及其变式 例题:3,9,27,81,( ) a.243 b.342 c.433 d.135 答案为a。这是最一种基本的排列方式,等比数列。其特点为相邻两项数字之间的商是一个常数。 例题:8,8,12,24,60,( ) a.90 b.120 c.180 d.240 答案为c。虽然此题中相邻项的商并不是一个常数,但它们是按照一定规律排列的:1,1.5,2,2.5,3,因此答案应为60×3=180,象这种题可视作等比数列的变式。 4.平方型及其变式 例题:1,4,9,(),25,36 a.10 b.14 c.20 d.16 答案为d。这道试题考生一眼就可以看出第一项是1的平方,第二项是2的平方,依此类推,得出第四项为4的平方16。对于这种题,考生应熟练掌握一些数字的平方得数。如: 10的平方=100 11的平方=121 12的平方=144 13的平方=169 14的平方=196 15的平方=225 例题:66,83,102,123,( ) a.144 b.145 c.146 d.147 答案为c。这是一道平方型数列的变式,其规律是8,9,10,11的平方后再加2,因此空格内应为12的平方加2,得146。这种在平方数列的基础上加减乘除一个常数或有规律的数列,可以被看作是平方型数列的变式,考生只要把握了平方规律,问题就可以化繁为简了。 5.立方型及其变式 例题:1,8,27,( ) a.36 b.64 c.72 d.81 答案为b。解题方法如平方型。我们重点说说其变式 例题:0,6,24,60,120,( ) a.186 b.210 c.220 d.226 答案为b。这是一道比较有难道的题目。如果你能想到它是立方型的变式,就找到了问题的突破口。这道题的规律是第一项为1的立方减1,第二项为2的立方减2,第三项为3的立方减3,依此类推,空格处应为6的立方减6,即210。 6.双重数列 例题:257,178,259,173,261,168,263,( ) a.275 b.178 c.164 d.163 答案为d。通过观察,我们发现,奇数项数值均为大数,而偶数项都是小数。可以判断,这是两列数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项中寻找,而必须在隔项中寻找,我们可以看到,奇数项是一个等差数列,偶数项也是一个等差数列,因此不难发现空格处即偶数项的第四项,应为163。也有一些题目中的两个数列是按不同的规律排列的,考生如果能判断出这是多组数列交替排列在一起的数列,就找到了解题的关键。 (责任编辑:86zhaokao.cn) |